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ABSTRACT 

For buildings with two eccentricities there exists, in the literature, several different definitions of the uncoupled torsional 
to lateral frequency ratio. This study clarifies the discrepancies and define the inter-relationship between these various 
definitions. Under parametric analysis an arbitrary selection of eccentricities and system frequencies can result in an 
physically inadmissible structure. Theoretical investigation, by use of Gershgorin's theorem, is required to establish 
bounds for these system parameters. Relational formulae are developed for different definitions of the uncoupled 
torsional to lateral frequency ratio. Graphical descriptions of admissibility bounds on system parameters are produced. In 
many past studies the phase spectrum of the ground acceleration and more interestingly the phase difference spectrum 
between orthogonal horizontal ground motions has been neglected. Investigation of the effect of ground motion phase 
difference on the structural response of a structural system is performed. Non-linear time history analysis is used in 
conjunction with Fourier spectral methods. The cross-correlation function is used. The variation in the response quantities 
with respect to the phase content of accelerogram has been found to be significant. Evidence of phase-difference 
spectrum to torsional mode amplification relationship is observed. 

INTRODUCTION 

The dynamics of structures has, traditionally, been investigated solely for the amplitude of the ground acceleration. The 
accelerograms also contain phase information of the component frequencies. Under bi-directional loading, the phase 
difference in the two lateral components of accelerograms should affect the structural response. Particular peaks of the 
ground motion in one horizontal direction may or may not be synchronised with peaks in the other orthogonal direction. 
Models of single storey asymmetric structures with lumped mass idealisation, are studied under the phased ground 
excitation. Three degrees of freedom, (xo , y„,0) two lateral and one twisting in the horizontal plane, are considered. For 

a single storey idealisation the (CR) is the centre of rigidity. (Hejal, R. et al 1987) defines clearly the location and nature 
of the CR. The stiffness actions applied at the CR while the inertial actions apply at the Centre of Mass (CM). By 
considering force and torque equilibrium about an arbitrary Origin 0 on the floor, then applying a co-ordinate 
transformation, the resulting equation of motion is given by 
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where the m is the lumped floor mass, (Icx1, k yi , )are the lateral bending stiffnesses and the torsional stiffness of the ith 

element (columns etc.). (xi , yi  ) are the co-ordinates of the ith element from 0. (xG , yG ) are the co-ordinates of the CM 

from 0. rm  is the radius of gyration about the CM. Equation (1) is parameterised and normalised by the introduction of 

eccentricity ratios and frequency parameters or frequency ratio parameters. The origin 0 is conventionally taken to be 
either CR or CM and this results in different forms of equation (1) with different definitions for the system parameters. 

There are at least two possible mass polar moments of inertia definitions (a) Jm  = mr,,  (b) Jr  = mr,2  where I-, is the 

radius of gyration about the CR. Similarly there at least two possible floor torsional stiffness definitions 
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(a) K„„ =I(x„, + y„„k„,+kck ) where (X  MI Y MI) are element co-ordinates from CM, or 

(b) K,., =1(x,2:,k ),, + yr2,k„ + ko,) where (cri , yri  ) are element co-ordinates from CR. Note that K„ is the actual floor 

static torsional stiffness at the CR ie the torque required to produce a unit rotation about the CR. However Km, is not 

strictly speaking the floor 'torsional stiffness defined at the CM' since under the action of a static torque the only point on 
the floor that rotates but does not displace is the CR. The introduction of angular displacement variables simplifies the 
equation of motion but can be achieved by using either rr  or rm  . Note that use of rm  would seem favourable in most 

cases as it is independent of eccentricities which will vary under inelastic conditions. Hence when introducing the 
`uncoupled' torsional frequency ratio there are at least four possible definitions 
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where (K,=Zk ,,K „, =Ik„). This leads to some confusion when results are compared by different authors. 

(Chandler, A.M. et al 1986), (Tso, W.K. et al 1986) and others use A, while (Goel, R.K. et al 1991) use Arm  and (Hejal, 

R. et al 1987) uses Amm  . Eccentricities (Ex  = xm,k ri , y  =L ymilcx;  11 I ci ) are the co-ordinates of the CR 

from the CM. Hence eccentricity ratios can be either (en„,emy  )= (exirm  , /r„, ) or (err , e,, )= (exirr , /rr  ). By 

applying perpendicular and parallel axes theorems the following relations can be derived. 

Generally speaking the eccentricity ratios defined at the CR are larger than those defined at CM. By co-ordinate 
transforms the following results can be derived linking the various definitions of the 'uncoupled' torsional frequency 
parameter. 
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where A,, = KylK„. Amm # Amr Arm Arr in the coupled system while in the uncoupled system all four definitions are 

identical. What is also clear is that only Amm  remains unchanged from the uncoupled to coupled systems (by the 

introduction of eccentricities) hence only this parameter can truly be named the uncoupled torsional frequency ratio. Thus 
the equation (1) defined at the CM has some advantages over CR when using /1„,,,, and rm  to normalise the rotations as 

both parameters are unaffected by the introduction of eccentricities to the problem. The transformed equation (1) at the 
(64 = 

Kx
im,(4 =Krini,com2

m=Km,
irnr,„2) CM would use frequencies parameters. The angular displacement co = r„,0 . 

The classical Rayleigh orthogonal damping matrix [C]= a, [M]-1- ai  [K] where the damping constants a, & a, can be 

calculated from the resulting eigen-problem by assuming constant ratio of critical damping for the first and third mode. 

APPLICATIONS OF GERSGORIN'S EIGENVALUE THEOREM 

By a classical eigenvalue analysis, the system dynamic matrix defined at the CM as follows and thus by applying 
Gershgorin's Theorem the smallest eigenvalue ,u must be as follows in (5). For dynamic structural stability the system 

must be positive definite, hence a conservative, but safe bound would be that all three conditions from (5) are greater that 

zero. 
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Figure 1 

Thus the bounds on eccentricity ratios are that their absolute values are less than one. The third bound is interesting 
because it is a constraint on the relationship of the four system parameters. The eccentricities and the frequency ratios 
cannot take on any arbitrary values. If the eccentricities are equal then the figure 1 represents the lower bound for the 
torsional frequency parameter. If the lateral frequency ratio is set to unity then the figure 2 represents the lower bound for 
the torsional frequency ratio with respect to eccentricities. If an antisymmetric paraboloid function for load/deflection of 
the floor in the (x,y,c0) directions is conjectured then by application of the first three terms of a Taylor series expansion 

it is possible to state the following enhanced equation of motion (6) as (Alexander et al 1999) suggests. This model has 

maxima of stiffness forces occurring at approximately ym
2 +92 = /32 The nonlinearity is valid for deflections 

xm
2

ym
2 +92 < 4/32 . Equation (1) is parameterised and extended to include parametric elastic nonlinearity thus : 
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This elastic nonlinearity, while not modelling individual element elastic-plastic non-linear stiffnesses, does allow for a 
parametric analysis of a stiffness softening system. This parametric analysis is performed without reference to a particular 
structural system hence provides a mechanism for a more generalised investigation. The nonlinearity parameter varies 
with the period of the building hence. 

fl = Al  (10Tx ) (7) 

where A l  is notionally the horizontal deflection of a single storey building at which the peak stiffness force is produced. 

In this study A l  = 0.01 

GROUND MOTION PHASE-DIFFERENCE SPECTRUM 

The role of phase content in accelerograms has been considered by various researchers (Kubo, T. 1984) (Katukura, H. et 
al 1989) (Yamanouchi H, et al 1990) concluding that phase content seems to be uniformly distributed between (0-27) 
across the structural frequency range. Also that the overall envelope shape of the time domain accelerogram is closely 
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related to phase content. Hence in the construction of synthetic accelerograms care must be taken in postulating the phase 
content. If, for any seismic event, the accelerograms are observed it becomes clear that peaks in the x and v directions are 
not synchronised. However there will be portions of the accelerograms where they are more synchronised than others 
This degree of synchronisation is an estimation of the phase difference content of a pair of x and y accelerograms. A more 
formal expression of this is to derive the Fourier frequency domain representation of the accelerogram pair. From this the 
phase content of the x and y history can be derived and thus the phase difference spectrum can be stated. A standard 
radix-2 FFT algorithm is used. If zero end padding is performed, a spurious frequency content will be introduced. Thus 
the time series are truncated to 2" data point. It can be shown that all the interesting strong motion reside within this limit. 
The cross-covariance function (un-normalised cross-correlation function is given by: 

R.,,.(r)= Lig (t+ r),j)g  (t)dt , (co) Rx,.(r)ei"dt = H,(co)ti ,(w) 
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The Fourier transform of R,y (r) is known as S„,(w) the cross-spectrum (cross-spectral density function). This function 

has the property known as the correlation theorem. H C (w) is the complex conjugate of Ida). The cross-spectrum, 

Sn.(c.o), is a complex function which can be evaluated from the Fourier integrals H,(co) & H y (cc)). The useful property 

of Sxv (co) is that its phase spectrum (here known as the phase difference spectrum D  (CO)) is the difference of the phase 

spectrums of the x and y ground accelerations. Using the phase spectrum of the cross-spectrum OD (w) it is possible to 

state an interpolating formula for a proposed new phase content of they accelerogram. 

0; (co) = Ox (w)+ vOD (co) : o H*1.(0= ila,.(co)2  +b,.(a))2 e jo,(o) (10) 

Thus when phase difference parameter tv = 1.0 the 0; (w) is identical to 0y (w) while if 41 = 0.0 then 0:(w) is identical 

to Or  (w). The y history is now reconstructed in equation (10) based on its original amplitude and its new phase 0:(w) 

This reconstruction requires an inverse fast Fourier transform IFFT algorithm. In order to maintain a real function in the 

time domain the newly constructed 1-1:,(co) Fourier spectrum must have an even real part and an odd imaginary part. 

Note that since both 1g & g (t) are real then by definition a x (co)& a v (o) are even and b,(co)& b,.(w) are odd. Thus 

by inspection 0 D  (CO) is odd and hence 0:(w) is also odd. So the newly constructed H.,.(w) spectrum will result in a real 

time domain function when it is inverse transformed. As the parameter 111 is varied the phase difference between the x and 

y accelerogram is modified. 

TIMEHISTORY RESPONSE SPECTRUM STUDY 

Corrected accelerograms were chosen from the US National Geophysical Data Center database of records. The selection 
criteria were (a) 5 horizontal accelerogram pairs from 4 soil class defined by Uniform Building Code. (b) magnitude 5-6 
ML (c) 'near field' records with epicentral distance less than 30km. (d) mostly from ground floor buildings or free field 

records. (e) almost entirely from the USA. The selection of x and y components is problematic. Thus each accelerogram 

pair is used twice; once with the first accelerogram as the x component and the second accelerogram as the y. Then the 
accelerogram pair are swapped; the first accelerogram becoming the y component and second being x. Thus these 40 
accelerogram pairs are normalised with respect to the group mean of the peak accelerations. This normalisation is also 
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problematic as the amplitude ratio of x component to y component needs to be maintained. Hence the x component is 

normalised to the mean peak acceleration value and the y component is normalised to maintain the original xy amplitude 

ratio. Given that for a particular accelerogram pair both orthogonal ground components are granted the opportunity to be 
the x component any bias is avoided. The structural parameters are varied thus: 
0.8 2,,,, 5 1.2, 0 emx  5 0.4, 0 5 emy  5 0.4, Ay  = 1.0 Response time histories are used to construct the spectra of total 

acceleration responses of the structure(s). 

Figure 7: 95% Spectral envelope, Soil Class 1, Figure 8: 95% Spectral envelope, Soil Class 1, 
Whittier Narrows Earthquake, 1987 Alaskan subduction Earthquake, 1964 

The mean ,u and standard deviation a-  of these spectra are calculated so that the p + 1.6450-  (95% spectral envelope) can 
it

be generated for the four soil classes. Figures 3 to 6 represent these 95% spectral envelope of responses with variation 

phase-difference parameter y for UBC soil classes 1 to 4. 
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DISCUSSION AND CONCLUSIONS 

Varying the phase-difference y of the accelerograms while also varying the structural parameters (ie. eccentricties, 
structural frequencies etc.) has an effect on the x & y response accelerations, when looking at the 95% spectral envelope 
of responses. These 95% spectra represent a statistical envelope of responses for a range of structural configurations with 
variation in phase-difference. The general conclusion is that the removal of phase-difference of the two orthogonal 
horizontal ground components produces an approximately 10% increase in x & y response accelerations. This result is 
regardless of soil class. The effects on the torsional acceleration is more pronounced. A reduction in phase-difference 
between orthogonal ground components significantly reduces the torsional acceleration. The peak value of the torsional 
response accelerations from figure 3 is monitored with change in phase-difference. Thus a percentage variation in the 
peak torsional response can be stated. The soil class study indicates that the peak variation of the torsional acceleration 
response (with phase-difference variation) is about 29%,22%,28% & 34% for soil classes 1,2,3 & 4. If the "amount" of 
phase-difference between two orthogonal horizontal components can be assessed by considering the peak variation in 
torsional response then the "amount" of phase-difference seems not to be function of soil class. However, without a larger 
sample of accelerogram data, it is difficult to draw any firm conclusions. Also potential bias in the accelerograms due to 
the correction procedure has not been evaluated i.e. the effects of sampling, attenuation relationships etc. Figure 7 & 8 
indicates that within the data for soil class 1 there is large variation. The percentage variation in peak torsional response is 
noted on figure 8 for these two earthquakes. The effects of varying the phase-difference on the Alaskan subduction 
Earthquake are small, about 4% variation in peak torsional acceleration. This indicates that the "amount" of phase 
difference for this accelerogram pair is small. Note also that the torsional acceleration is smaller than in figure 3. The 
effects of varying the phase-difference on the Whittier Narrows Earthquake is large, about 45% variation in peak 
torsional acceleration in figure 8. This indicates that the "amount" of phase-difference for this accelerogram pair is large 
as is the torsional response acceleration. There is change from a "twisting and swaying" building vibration mode when 
there is significant phase-difference in the ground motion to a "less twisting and more swaying" mode when there is no 
phase-difference in the ground motion. Hence care should be taken in the selection of accelerograms. Generally there is 
evidence of a phase-difference to torsional acceleration amplification relationship. 
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